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Saturation number of fullerene graphs
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Saturation number of a graph G is the minimum possible size of a maximal match-
ing in G. We establish improved upper and lower bounds on the saturation number in
fullerene graphs and discuss their sharpness and quality.
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1. Introduction

Since the very beginning of the chemical graph theory various match-
ing-related concepts and invariants have been used to study the properties
of wide classes of chemically interesting compounds. The earliest research
in this area was motivated by the observed correlation between the stabil-
ity of certain aromatic molecules and the number of perfect matchings in
the corresponding graphs [9]. This line of research has been vigorously fol-
lowed over the course of several decades and has lead to accumulation of
a vast number of results, mostly concerned with enumerating perfect match-
ings in benzenoids [2, 18], and, more recently, also in fullerene graphs [3, 5, 22].
The non-perfect matchings came in the focus in early 1970s, by introduc-
tion of the so-called Hosoya index and Hosoya polynomial, and their subse-
quent use in investigation of structure-related properties of chemical compounds
[13, 19]

In this paper, we are concerned with another matching-related invariant,
the saturation number of a graph. Unlike the previously mentioned invari-
ants, this one is not of enumerative, but of a structural nature. We pres-
ent here improved lower and upper bounds on this quantity in the class
of fullerene graphs, and discuss the quality and sharpness of the obtained
bounds.
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2. Mathematical preliminaries

All graphs considered here will be finite, simple, and connected. For all
graph-theoretical terms and concepts used, but not defined here, we refer the
reader to any of several standard monographs, such as [12, 16, 20].

We consider a graph G with the vertex set V and the edge set E . A set
I ⊆ V is independent if no two vertices of I are adjacent. The largest cardinality
of an independent set in G is called the independence number of G and denoted
by α(G).

A matching in G is a subset M of E such that no two edges of M have a
vertex in common. If every vertex v ∈ V is incident with an edge e ∈ M , we say
that the matching M is perfect.

A subgraph H of G is nice if the graph that remains after removing from G
the vertices of H and all edges incident with them still has a perfect matching.

A matching M of G is maximum if |M | � |N | for any other matching N
in G. (Here |M | denotes the size of matching M , i.e., the number of elements
in the set M .) The size of any maximum matching in G is called the matching
number of G and denoted by ν(G). For a graph G with p vertices one always
has ν(G) � p/2, and ν(G) = p/2 if and only if G has a perfect matching.
A maximum matching in a graph G (and hence also ν(G)) can always be found
in a polynomial time [6].

A matching M in G is maximal if for every e ∈ E\M , the set M ∪ e is
not a matching. In other words, a matching M is maximal if it is not a subset
of some other matching in G. Obviously, any maximum matching in G is also
a maximal matching. Hence, the largest number of edges in a maximal match-
ing in G is ν(G). Much more interesting quantity is the smallest possible num-
ber of edges in a maximal matching of G. This number is called the saturation
number of G. We denote it here by s(G). Unlike the case of ν(G), the problem
of determining s(G) is NP-hard [21]. This is completely in line with the fact that
the theory behind maximal matchings is much less developed than the theory for
maximum matchings. As a consequence, the maximal-matching-related problems
are less researched and less well understood.

Obviously, the set of vertices not covered by a maximal matching M in G
must be independent. This gives us an obvious lower bound on the saturation
number of G, s(G) � 1

2 (p−α(G)). However, the independence number of a graph
is notoriously difficult to compute, and this lower bound is often not very useful.

In a chemical context maximal matchings appear, e.g., when one consid-
ers adsorption of dimers (diatomic molecules) on a larger molecule, where each
dimer binds to a pair of adjacent atoms in the large molecule. Obviously, any
adsorption pattern corresponds to a matching in the graph representing the large
molecule, and the situation when no further adsorption is possible since there are
no free pairs of adjacent atoms in the large molecule is represented by a maximal
matching in the corresponding graph.



T.Došlić / Saturation number of fullerene graphs 649

3. Maximal matchings in fullerene graphs

In this paper, we consider the case when the role of a large molecule is
played by a fullerene. A fullerene molecule is modeled by a fullerene graph.

A fullerene graph is a planar, 3-regular and 3-connected graph, 12 of whose
faces are pentagons, and any remaining faces are hexagons. It is well known that
fullerene graphs on p vertices exist for p = 20 and for all even p � 24 [11]. Ful-
lerene graphs without abutting pentagons (the so-called IP-fullerenes) exist for
p = 60 and for all even p � 70 [14].

Every fullerene graph admits a perfect matching [14], and the lower bounds
on the number of perfect matchings have been presented in a number of recent
papers [3, 5, 22]. Maximal matchings in fullerenes have been so far considered
only briefly in [4], where the following bounds were established.

Proposition 1 [4]. Let G be a fullerene graph on p vertices. Then
⌈ p

4
+ 1

⌉
� s(G) � p

2
− 2.

The only property of fullerene graphs used to establish the bounds of prop-
osition 1 was their 2-extendibility. (A graph G on p � 2(n + 1) vertices is
n-extendable if it contains a set of n-independent edges and if any such set can
be extended to a perfect matching in G.) The lower bound follows directly from
theorem 4.3 of Ref. [17], while the upper one was derived considering certain
nice subgraphs of fullerene graphs. It turns out that using another property of
fullerene graphs, their 3-regularity, yields a better lower bound on s(G). We will
need the following result.

Proposition 2 [24]. Let G be a d-regular graph. Then the size of any maximal
matching in G is at most

(
2 − 1

d

)
s(G).

Our first main result now follows immediately.

Theorem 3. Let G be a fullerene graph on p vertices. Then s(G) � 3p
10 .

Proof. Every fullerene graph contains a perfect matching, i.e., a matching of
size p/2. As any perfect matching is also maximal, from proposition 2 one has
p
2 � 5

3s(G), and the claim follows. ��
The lower bound of theorem 3 is considerably better than the one from propo-
sition 1, but again, it relies only on one particular property of fullerene graphs,
their 3-regularity. It would be natural to expect that the quality of this lower
bound will not be particularly high. However, the following result shows that the
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A CB D

Figure 1. Maximal matchings in Grünbaum–Motzkin caps.

regularity of fullerene graphs in fact provides quite good lower bound, and is
much more important for their saturation number than the 2-extendibility.

Theorem 4. For each even integer p � 24 there is a fullerene graph G on p ver-
tices such that s(G) � �p/3�.

Proof. Let p � 24 be an even integer. Then p is of the form p = 12(m +1)+k,
where k = 0, 2, 4, 6, 8, or 10. Grünbaum and Motzkin showed [11] that it is
always possible to construct a fullerene on p vertices by choosing two of the
caps shown in figure 1 and connecting them by a nanotube composed of m rings
(or layers) of 12 vertices. An example of such nanotube is shown in figure 2.
The caps are chosen in such way that the total number of vertices in them is
congruent to p (mod 12). We denote the number of vertices in cap X by |X |,
for X = A, B, C, and D. Hence, |A| = 6, |B| = 8, |C | = 10, and |D| = 12.
Obviously, the edges shown in bold in figure 1 make maximal matchings in the
respective caps, and the cardinality of such a maximal matching in the cap X
does not exceed �|X |/3�. Now, the bold lines in the segment of the nanotube
shown in figure 2 are a maximal matching in that segment, and it is obvious
that in a nanotube of m layers (and hence with 12m vertices) there is a maxi-
mal matching with 4m edges. By combining a nanotube and two suitably cho-
sen caps we obtain a fullerene with a given number of vertices, and the union
of the exhibited maximal matchings in the nanotube and in the caps is a max-
imal matching in the whole fullerene graph. As the cardinality of this maximal
matching does not exceed �p/3�, the claim of the theorem follows. ��

Hence, our lower bound from theorem 3 is of surprisingly good quality,
given the fact that it does not use any other property of the fullerene architecture
except its 3-regularity. Moreover, it is not very likely that it can be significantly
improved. Namely, in a recent paper concerned with small maximal matchings in
random graphs [23], the author provides a probabilistic argument that the cardi-
nality of the smallest maximal matching in a random 3-regular graph on p ver-
tices is at least 0.315812p for almost all such graphs. (We refer the reader to the
standard Ref. [1] for the precise meaning of the term “almost all” and for other
random-graph-related terminology.) In other words, almost all cubic graphs on
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Figure 2. A maximal matching in a nanotube segment.

p vertices have the saturation number at least 0.315812p, and it should be very
improbable that a fullerene graph has the saturation number between our lower
bound 0.3p and 0.315812p. Improbable as it may be, it turns out that there are
at least two fullerene graphs whose saturation number satisfies the lower bound
of theorem 3 exactly. One of them is buckminsterfullerene isomer of C60, the
other one is the dodecahedron C20. Both of them are in many ways exceptional –
C20 is the smallest (mathematically) possible fullerene, and the only one without
hexagons, while buckminsterfullerene is the smallest isomer with isolated pen-
tagons, the most stable, and the most abundant one. Also, both of them pos-
sess the highest possible symmetry – their symmetry group is the full icosahedral
group Ih . We do not know if there are any other, less symmetrical, fullerenes
with s(G) = 0.3p, but we can prove that there are no other such graphs with
icosahedral symmetry.

It is well known (see, e.g. [7], pp. 10–21) that an icosahedral fullerene on p
vertices can be constructed using the Coxeter construction for each p satisfying
p = 20(i2 + i j + j2), where i and j are integers, i � j � 0 and i > 0. Here each
distinct pair of Coxeter parameters (i, j) gives rise to a distinct isomer, and the
geometric meaning of the parameters i and j is given by the distances between
the pentagons in two directions on hexagonal lattice. When i = j or j = 0, the
fullerene has the full icosahedral symmetry group Ih , while for 0 < j < i its
symmetry group is the rotational subgroup I. All icosahedral fullerenes except
the smallest one (C20, generated by i = 1, j = 0) have isolated pentagons.
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The independence number of an icosahedral fullerene can be neatly expressed
in terms of its Coxeter coordinates. We refer the reader to Graver [10] for the proof
of the following result.

Proposition 5. [10]. Let G be an icosahedral fullerene on p vertices with Coxeter
parameters (i, j). Then α(G) = p

2 − (2i + 4 j).

Now we can prove that the lower bound of proposition 1 is sharp for only two
icosahedral fullerenes.

Theorem 6. Let G be an icosahedral fullerene on p vertices such that s(G) =
0.3p. Then G is either the dodecahedron C20 or buckminsterfullerene C60.

Proof. Let us first consider the case i = j . Then p = 60i2 and α(G) = p
2 −6i =

p
2 −

√
3p
5 . Then a maximal matching in G must contain at least 1

2 (p − α(G)) =
p
4 +

√
3p
20 edges. Let us suppose that such a maximal matching exists. From the

condition p
4 +

√
3p
20 � 3p

10 it follows p � 60, and our fullerene must be the buck-
minsterfullerene.

The case j = 0 follows in a similar manner. Here p = 20i2 and α(G) =
p
2 −

√
p
5 . Hence, the minimum cardinality of a maximal matching in G must be

at least p
4 +

√
p

20 . If such a maximal matching exists, the condition p
4 +

√
p

20 � 3p
10

yields p � 20, and G must be the dodecahedron C20.
Finally, we consider the general case i �= j, j > 0. Then the fullerene has

20(i2 + i j + j2) vertices and proposition 5 implies that α(G) = 10(i2 + i j + j2)−
(2i + 4 j). Hence, the minimum number of edges in a maximal matching of G is
at least 5(i2 + i j + j2) + i + 2 j . If there is a maximal matching in G with this
cardinality, the condition s(G) � 3p

10 yields the inequality i + 2 j � i2 + i j + j2.
By dividing both sides by i j we obtain

1
j

+ 2
i

� i

j
+ 1 + j

i
.

Since the quantity i
j + j

i is strictly greater than 2 for i �= j , the right-hand side of
the above inequality is strictly greater than 3. On the other hand, the left-hand
side is always strictly less than 3, since the condition i > j > 0 implies 1

i < 1.
Hence, the graph G cannot contain a maximal matching with exactly 1

2 (p−α(G))

edges, and the lower bound s(G) � 3p
10 cannot be sharp. ��

Let us now turn our attention to the upper bounds. The upper bound of prop-
osition 1 can be strengthened by exhibiting an independent set of certain cardi-
nality such that all its neighbors are covered by a maximal matching. We prove
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vu

Figure 3. An independent set with c log2 p vertices.

that in a sufficiently large fullerene graph one can always find an independent set
with this property whose cardinality grows at least logarithmically with the num-
ber of vertices. The key role in our proof is played by the relationship between
the number of vertices in a fullerene graph and its diameter, i.e., the maximum
distance between two vertices. For the proof of the following result we refer the
reader to Friedman and Pratt [8] and to general literature on the degree–diame-
ter problem for planar graphs.

Lemma 7 [8]. Let G be a planar graph with maximum degree 3 and a given
diameter D. Then G has at most 2D+1 − 1 vertices. ��

Hence, in planar graphs with maximum degree 3 we have the following lower
bound on their diameter in terms of number of vertices:

D �
⌈

log2(p + 1) − 1
⌉

.

Now we can state and prove an upper bound on the saturation number valid for
all fullerene graphs.

Theorem 8. There exists an absolute constant c > 0 such that s(G) � p
2 −c log2 p,

for any fullerene graph G on p vertices.

Proof. Let G be a fullerene graph on p vertices. Then for its diameter D we
have the following lower bound:

D � D0 = ⌈
log2(p + 1) − 1

⌉ = 	log2 p
.
Let us take two vertices, u and v, such that the distance between them is equal to
D0. On a path P of length D0 connecting u and v we can take an independent
set I0 of cardinality �(D0 + 2)/2� in the manner shown in figure 3. Let M0 be
a maximal matching in G − I0 that covers all vertices adjacent to the vertices of
I0. It is obvious that such a maximal matching always exists, due to the defining
properties of fullerene graphs. The cardinality of such a matching cannot exceed
(p − |I0|)/2. This quantity is roughly of the order of p

4 − 1
4 log2 p. Since M0 is

also a maximal matching in G, the claim of the theorem follows. ��
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The logarithmic correction in the upper bound of theorem 8 is a significant
improvement compared with the constant offset of 2 from proposition 1, but it is
not very likely that it is the best possible. In [23], the author presents a probabi-
listic algorithm that yields a maximal matching of the size at most 0.47563p for
almost all 3-regular graphs. Hence, it is very likely that for all fullerene graphs
their saturation number is bounded from above by γ p, where γ < 1/2 is a posi-
tive absolute constant. At the present time we are able to prove an upper bound
of this type only for the fullerene graphs of sufficiently high symmetry. For the
sake of clarity of exposition, we present the details only for the icosahedral fulle-
renes with Coxeter parameters (3m, 0), where m � 1.

Theorem 9. Let G be an icosahedral fullerene on p vertices with Coxeter param-
eters (3m, 0) for some m � 1. Then

s(G) � p

3
+

√
5

10
√

p − 36 = p

3
+ O(

√
p).

Proof. An icosahedral fullerene G with Coxeter parameters (3m, 0) has 180m2

vertices. The claim of the Theorem will follow if we exhibit a nice independent
set of sufficiently large cardinality. We start by noting that G is composed of 20
triangular patches, such as the one shown in bold in figure 4, and 12 pentagons.
Each triangular patch has (3m − 1)(3m − 2)/2 hexagons and 9m2 − 3 vertices.
As the patches are vertex disjoint from each other, as well as from the penta-
gons, our task is reduced to finding a nice independent set in a patch that will
contain roughly one-third of its vertices. An example of such independent set is
shown by black circles in figure 5. It can be constructed as follows.

First we choose one of two possible perfect matchings of the border cycle
of the patch. By doing so, we avoid the problem of assembling patches together,
and ensure that the union of independent sets in patches will be an independent
set in the whole fullerene. We start by selecting 3(m − 1) independent vertices in
the lower-most row of hexagons and proceed toward the top, selecting at each
level as many vertices as possible while maintaining nicety of the independent
set. It is easy to notice the regularity in decrease of the number of vertices that
are selected at each subsequent level: it decreases alternately by 3 and by 0. From
there one easily obtains the total number of vertices in the nice independent set
in one patch as

3(m − 1) + 2
m∑

j=2

(3m − 3 j) = 3(m − 1)2.
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Figure 4. Basic triangular patch in an icosahedral fullerene.

Figure 5. A large independent set and the corresponding maximal matching in a triangular patch.

Hence, each patch contains a maximal matching with 3(m2 +m −1) edges. (Such
maximal matching is shown in bold in figure 5.) By summing over all 20 patches
and adding two edges for each of 12 pentagons, it follows that G contains a
maximal matching with 60m2 +60m −36 edges. Hence, s(G) � 60m2 +60m −36,
and the claim of the theorem follows by expressing the quantity 60m2 +60m −36
in terms of the number of vertices p. ��

The upper bound of theorem 9 is most likely not the best possible, and it
is quite probable that taking into account the edges connecting different patches
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would improve it by eliminating the
√

p term, but we wanted to keep the deri-
vation as simple as possible.

By a similar argument one could establish linear upper bounds on s(G) for
other icosahedral fullerenes, and also for tetrahedral fullerenes and certain clas-
ses of tubular fullerenes with high-enough symmetry, such as Dih and Did , where
i = 5 or 6. However, highly symmetric fullerenes become increasingly rare with
the increase of the number of vertices. Hence, we believe that a better insight into
the quality of the bounds established in this paper could be obtained by comput-
ing the saturation number for all fullerene isomers on a given number of verti-
ces and analyzing the results for the isomers of low symmetry. We are inclined
to believe that the saturation number of most, if not all, fullerenes on p vertices
will be close to the value of p/3. Arguments in support of such guess are pro-
vided by Theorems 4 and 9 that deal with extreme fullerene shapes. As for both
extreme cases the saturation number is close to p/3, it is reasonable to expect
that for the intermediate shapes the value of s(G) will not fluctuate much.
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